

Bash it Out!
Strengthen your Bash knowledge with 17 scripting

challenges of varied difficulties

By Sylvain Leroux

Acknowledgement

This work has started by a humble post in the Linux Users Group on Facebook. Needless to say,
I had no idea at the time there will be so many Bash Challenges that we could publish an entire
book!

Certainly, I couldn't have gone so far without the help of Abhishek Prakash who invited me to
publish these challenges not only on It’s FOSS Facebook page but also on the It’s FOSS
website. Abhishek is also at the origin of the idea of compiling all those challenges—including
some unreleased material—to make the book you are reading now.

But there is a whole world between publishing a regular column on a blog and making a book.
Illustration, pagination, and overall project management were some of the tasks Rohini Rachita
particularly shined at.

Last but not least, I must thank all the people on Internet that enjoyed those challenges. This
work was made for you. My goal was to help you in discovering some subtleties or pitfalls of that
great tool the Bash is. And given your comments and reactions on Internet, I know you liked that
work.I I sincerely hope you will have even more fun today by reading this enhanced version of the
Bash Challenges!

Sylvain Leroux
June 2017

Yes I Know It

3

https://www.facebook.com/groups/822286747871993/
https://www.facebook.com/itsfoss/
https://itsfoss.com/
https://www.yesik.it/

Contents

Acknowledgement 3

Contents 4

Publisher’s Foreword 8

How to use this Bash Challenge book? 9

Before you go on bashing 10

Challenge 1: Counting files in the current directory 12
What I tried to achieve? 12
The solution 13

How to reproduce? 13
What was the problem here? 13
How to fix that? 13

Ignore the file's name 14

Challenge 2: My shell don't know how to count 15
What I tried to achieve? 15
The solution 16

How to reproduce? 16
What was the problem? 16
How to fix that? 17

Removing leading zeros 17
Specifying explicitly the base 18

Challenge 3: My command outputs are in the wrong order! 19
What I tried to achieve? 19
The solution 20

What was the problem? 20

Challenge 4: Keeping filenames containing some extension 22
What I tried to achieve? 22
The solution 23

What was the problem? 23
How to fix that? 23

Protecting the dot from special interpretation 23
Anchoring a pattern at the end of a line 24

4

Challenge 5: The lazy typist challenge 25
What I tried to achieve? 25
My solution 26

Challenge 6: The dangerous file to remove 27
What I tried to achieve? 27
The solution 28

What was the problem? 28
How to solve that? 28

Challenge 7: The file that didn't want to go away 30
What I tried to achieve? 30
The solution 31

What was the problem? 31
How to achieve my goal? 33

Challenge 8: Hex to ASCII conversion in Bash 35
What I tried to achieve? 35
The solution 36

How to reproduce 36
What was the problem here? 36
How to fix that? 37
Alternate solutions 37

Challenge 9: My Bash can't sum data in columns 38
What I tried to achieve? 38

What was the problem? 39
How to fix that? 39

Add the missing zeros 40
Split data on fixed position 40

Challenge 10: The file that survived to rm 41
What I tried to achieve? 41
The solution 42

How to reproduce 42
What was the problem? 42
How to fix that? 43

Challenge 11: The red/blue token counter 44
What I tried to achieve? 44
The solution 45

What was the problem? 45

5

The store and process approach 45
Duplicate stream 46
Handle data as they arrive 46

Challenge 12: Inserting the same header on top of several different files 48
What I tried to achieve? 48
The solution 49

What was the problem? 49
How to fix that? 50

The KISS solution 50
Using sed 50
Using ed or ex 51

Challenge 13: Converting text to uppercase 52
What I tried to achieve? 52
The solution 52

Challenge 14: The Back in Time Function 54
What I tried to achieve? 54
The solution 55

What was the problem? 55
How to fix that? 55

Converting date to quantities 55
Using the mighty powers of GNU date utils 56

Challenge 15: My Bash don't know how to count. Again! 58
What I tried to achieve? 58
The solution 58

What was the problem? 58
How to fix that? 58

Challenge 16: Sending a file between two computers 60
What I tried to achieve? 60
The solution 60

What was the problem? 60
Introducing netcat 60
Replacing the client netcat by the Bash 62

Challenge 17: Generate a fair dice roll 64
What I tried to achieve? 64
The solution 64

What was the problem? 64

6

What was the problem, really? 65
How to fix that? 67

Afterword 69

7

Publisher’s Foreword

Bash It Out is our first attempt in bringing out unique and helpful Linux related educational
material in book format.

Some of you might already know us from the It's FOSS Linux Blog (https://itsfoss.com), an open
source web portal promoting Linux and Open Source. With over 250,000 members in our
community, we feel pride in being one of the most prominent voices in the world of Open Source.

What you are reading as a book was started as a mere Facebook post. It was liked by many
Linux enthusiasts and that encouraged us to cover it on the website itself.

Eventually, we thought of putting it all in a more organized form and thus came out Bash it Out!

It consists of a few challenges that we already put on our website and some exclusively new
problems.

We plan to add more new problems in this book in future.

I hope you enjoy solving these problems and learn new things from the solutions.

Abhishek Prakash
Co-Founder, It’s FOSS

8

https://itsfoss.com/

How to use this Bash Challenge book?

Since you are taking the Bash challenge, we presume that you are aware of the basic
fundamentals of the Bash scripting. You don’t have to be a command line ninja to take up these
challenges but you must know a thing or two about Bash and Linux/Unix commands.

The problem given here doesn’t require you to write a Bash script. It rather presents you with a
scenario and asks you why the output is not the expected one or why the script is behaving like
this while it shouldn’t.

The Bash scripting challenges in this book are divided into 3 levels of difficulties. So, if you are a
beginner, you’ll learn a lot with higher level challenges. And if you are a pro, you can jump to
expert level challenges straightaway though I suggest you take all the challenges to test your
knowledge.

The primary aim of this book is not to teach you Bash scripting. We aim to provide you with tricky
question that will force you to go deeper with your Bash knowledge. You won’t find these things in
text books.

While taking the challenges, you should refer to man pages of the commands or Google for their
usage. There is no restriction on that.

One important thing here, we provide one solution to each Bash exercise here. But there can be
in fact more than one ways to solve the same problem. So if you don’t find your solution in the
book, feel free to discuss it on our Facebook page or by sending us an email.

Enough talk! Come on, Bash It Out!

9

Before you go on bashing

A few details you should know. To create this challenge, I used:

● GNU Bash, version 4.4.5 (x86_64-pc-linux-gnu)
● Debian 4.8.7-1 (amd64)
● All commands are those shipped with a standard Debian distribution
● No command was aliased

The challenges are divided in three levels.

● level 1 challenges covers tricks accessible to all Bash scripters;
● level 2 challenges requires some knowledge of a specific command or shell feature;
● level 3 challenges are more tricky and may require more advanced concepts or more

subtle solutions.

That being said, the division is rather arbitrary, so don't be afraid to try the challenges in the order
you want. The only real prerequisites here are some basic Bash syntax knowledge and most
important, the desire to learn while having fun.

If you feel like discussing any problem, feel free to reach out by any of these three means:

● Email: sylvain@yesik.it
● Facebook page: https://www.facebook.com/Yes.I.Know.IT/
● Website: https://yesik.it

So, let's play together!

10

mailto:sylvain@yesik.it
https://www.facebook.com/Yes.I.Know.IT/
https://yesik.it/

Challenge 1: Counting files in the current directory

What I tried to achieve?
I wanted to count the number of files in the current directory. For that, I used the ls and wc
commands:

yesik:~/ItsFOSS$ ls -l

total 0

-rw-r--r-- 1 yesik yesik 0 Nov 22 22:45 file1

-rw-r--r-- 1 yesik yesik 0 Nov 22 22:45 file2

-rw-r--r-- 1 yesik yesik 0 Nov 22 22:45 file3

ok

yesik:~/ItsFOSS$ ls | wc -l

4

I was expecting a result of 3 since I visibly have three files in that directory. But for some
unknown reason, that was not the result I've obtained. Could you explain me why? And most
important, how to achieve my goal?

12

The solution

How to reproduce?
Here is the raw code we used to produce this challenge. If you run that in a terminal, you will be
able to reproduce exactly the same result as displayed in the challenge illustration (assuming
you are using the same software version as me):

mkdir -p ItsFOSS

cd ItsFOSS

touch file1 file2 $ 'file3\nok'

clear

ls -l

ls | wc -l

What was the problem here?
When send to a pipe, the ls command write each filename on its line. Just like when using ls
-1 from a terminal. And the wc -l command count lines . Apparently ls | wc -l should display
the number of files or folder in the current directory.

However a filename may contain the newline character (often denoted \n). It is certainly
uncommon but perfectly valid though.

In that challenge, the ok word you can see on the screen capture was part of the third filename,
which in fact was file3\nok . Not file3 as one may believe it at first sight.

This is a corner case you must take that into account in your scripts or shell commands to not
break if a filename contains that character. Either by accident, or as the result of some malicious
activity.

How to fix that?
Remove non-printable characters from the ls output

ls -q | wc -l

Modern versions of ls have the -q option that will replace non-printable characters by a question
mark (?) The -q option is more portable than the -b option you may sometimes see used for that
purpose. In both cases, we are absolutely certain \n embedded in filename will not interfere with
our count. According to POSIX:

13

-q Force each instance of non-printable filename characters and <tab>s to be

written as the question-mark ('?') character. Implementations may provide

this option by default if the output is to a terminal device.

On my Debian Squeeze test system, -q was not the default. That’s why the ok word appears
on its own line. On Debian Stretch, -q is enabled by default and the output is different — only
when the output is a console — and it will display the last filename as file3?ok .

Ignore the file's name

I want to count the number of files . Not the number of filenames . So, as an alternate solution, we
could just ignore the filename and issue a token for each encountered file. counting the number
of tokens will give the same result as counting the number of files. And as we have the control of
the token, we cannot be fooled. We can use the find command for that purpose:

find . -mindepth 1 -maxdepth 1 - printf '\n' | wc -l

- or -

find . ! -path . -maxdepth 1 - printf '\n' | wc -l

Here I made the choice of using an empty line (\n) as the token. So, those two command will
produce one empty line per entry in the current directory. Notice the actual filename is never
written to the output. So whatever characters may be embedded in the filename, they will not
interfere with following commands in the pipe. I just have then to count the number of lines to
know the number of files there was.

Please notice -mindepth 1 and ! -path . : those are two different tricks to remove the current
directory (.) from the selection. Otherwise, your count will be off by one.

14

Challenge 2: My shell don't know how to count

What I tried to achieve?
I have some data file containing integer numbers, one on each line, and I want to compute the
sum of all those numbers:

yesik:~/ItsFOSS$ cat sample.data

102

071

210

153

yesik:~/ItsFOSS$ declare -i SUM = 0

yesik:~/ItsFOSS$ while read X ; do

> SUM +=$X

> done < sample.data

yesik:~/ItsFOSS$ echo "Sum is: $SUM"

Sum is : 522

Unfortunately, the result I obtain is wrong (the expected result was 536).
Could you explain why the result is wrong and fix my commands to obtain the correct result.

15

Extra challenge:
could you find a solution using only Bash internal commands and/or shell
substitutions.

The solution

How to reproduce?

Here is the raw code we used to produce this challenge. If you run that in a terminal, you will be
able to reproduce exactly the same result as displayed in the challenge illustration (assuming
you are using the same software version as me):

rm -rf ItsFOSS

mkdir -p ItsFOSS

cd ItsFOSS

cat > sample.data << 'EOT'

102

071

210

153

EOT

clear

cat sample.data

declare -i SUM=0

while read X ; do

 SUM+= $X

done < sample.data

echo "Sum is: $SUM "

What was the problem?
The problem was caused by the 071 value. As you noticed, this number is starting by a
0 — probably to ensure all data are formatted on three digits. Nothing complicated here, except
that … following an unfortunate convention inherited from the C programming language, prefixing
an integer by 0 is a way to specify that number is expressed in octal , and not in decimal .

16

Octal numbers are expressed with digits from 0 to 7. Here is a simple conversion table:

The value in bold in the above table is the one that caused the error when evaluating the sum.
The Bash read 071 and, because of the leading 0, interpreted it as the octal number 71 8
representing the 57 10 decimal value. You can check that easily:

echo $((071))

57

How to fix that?
I can see two main strategies to fix that issue. Either removing the leading zeros. Or finding a
way to make the shell understand all my numbers are decimal values.

Removing leading zeros

Here is a simple solution using the sed external command to remove the leading zeros:

declare -i SUM=0

while read X ; do

 SUM+= $X

done < <(sed -E s/^0+// sample.data)

echo "Sum is: $SUM "

Bonus question:
why didn’t I used a pipe instead of a process substitution ?

17

Specifying explicitly the base

The previous solution is (mostly) straightforward — but the Bash allows us to make things better.
Instead of trying to fix the data, we will simply specify explicitly our numbers are expressed in
base 10 (decimal), instead of base 8 (octal). You can do that by using the base#value syntax.

Compare those three examples:

echo $((071)) # The leading 0 specify the number as octal

57

echo $((8 #071)) # We *explicitly* specify base 8 (octal)

57

echo $((10 #071)) # We *explicitly* specify base 10 (decimal)

71

To fix my initial command and obtain the correct result, I only have to explicitly specify the base
10 for all my data:

declare -i SUM=0

while read X ; do

 SUM+=$((10 #$X))

done < sample.data

echo "Sum is: $SUM "

I let you check that yourself, but it definitely should produce the correct result this time!

18

Challenge 3: My command outputs are in the
wrong order!

What I tried to achieve?
This time, I want a shell function to log the round trip time (rtt) to a server. Only if the ping
command has succeeded, I want to record the date of the measure on the line below the rtt.

Given those requirements, I end up with that solution:

yesik: ~ /ItsFOSS$ probe() (

> ping -qnc2 www.google.com | \

> grep rtt & \

> date +"OK %D %T"

>)

yesik:~/ ItsFOSS$ rm -f log

yesik: ~ /ItsFOSS$ probe >> log

yesik:~/ ItsFOSS$ probe >> log

yesik: ~ /ItsFOSS$ cat log

OK 11/ 22 / 16 22 : 52 : 36

rtt min/avg/max/mdev = 53.394 / 77.140 / 100.887 / 23.748 ms

OK 11 / 22 / 16 22 : 52 : 39

rtt min/avg/max/mdev = 49.142 / 49.731 / 50.320 / 0 . 589 ms

But, I don't understand why the date and rtt lines are swapped in the log file?!? The date should
appear below the rtt. But here it appears above . Why? Could you fix that?

19

The solution

What was the problem?
I’ve simply made a typo: I mistaken & for && — maybe was I confused by the pipe (|) symbol
above? Indeed, all the | , || , & and && operators can be used to join two shell commands. But
they have completely different meanings:

cmd1 | cmd2 The pipe
symbol

Run both commands in parallel in a sub-shell, using the
output of cmd1 as input to cmd2. The pipe is a very
common way to combine several basic commands in
order to accomplish complex tasks.

cmd1 & cmd2 The
ampersand

Run cmd1 as a background process, and in parallel, to
run cmd2 in the foreground. The two commands are not
connected in any way using that operator.

cmd1 || cmd2 The
short-circuit
logical OR

Run cmd2 only if cmd1 has failed. As a consequence
cmd1 must complete before cmd2 is eventually run. In
other words, commands run sequentially.

cmd1 && cmd2 The
short-circuit
logical AND

Run cmd2 only if cmd1 was successful. As a
consequence cmd1 must complete before cmd2 is
eventually run. In other words, commands run
sequentially.

Armed with that knowledge, let’s now take a look at my original code:

probe() (

 ping -qnc2 www.google.com | \

 grep rtt & \

 date + "OK %D %T"

)

1. I want to run the ping command and send its output to the grep command. The pipe is

the right operator.
2. But after that, I wanted to write the date only if the pipe was successful. Here, I needed

the logical AND operator (&&). But instead of that, I used the & operator, that basically run
ping | grep into the background — always. And date in the foreground — always.
There is a race condition as both processes are now running in parallel and compete to
write on stdout (the terminal output). Unsurprisingly, in that particular example, the date
command won every time over the ping command.

20

Therefore the correct syntax would have been:

probe() (

 ping -qnc2 www.google.com | \

 grep rtt && \

 date + "OK %D %T"

)

In my case, the issue was immediately visible because, obviously, the ping command takes
more time to complete than the date command. But, as this is often the case with race
conditions, such mistakes could easily remain hidden for a very long time when the two
"contestants" of the race take almost the same time to complete. For example, the following
example is a lot less deterministic:

probe() (

 ping -qnc2 itsfoss.com | sed 1q & \

 ping -qnc2 kernel.org | sed 1 q

)

From my location in France, on 2000 runs, the first ping lost only 3 times. That means the "bug"
was visible only in 0.15% of the cases. Next time you'll report some occasional software
crash — be kind with your favorite FOSS developers and remember that even caused by typos,
race conditions are hard to reproduce and even harder to trace!

21

Challenge 4: Keeping filenames containing some
extension

What I tried to achieve?
In a file, I have a list of Windows filenames stored one per line (this is part of the logs from an
auditing tool running on my Samba server). I want to extract from that list all files containing the
.bat extension. That extension must be spelled exactly like that and must appear at the end of
the filename(i.e.: I don't want to keep .bat.orig files nor .batch files).

The grep command is the canonical tool when you want to find lines containing some pattern in
a file. Unfortunately, I wasn't able to achieve my intended result:

yesik:~/ItsFOSS$ cat sample.data

login.bat

login.exe

logout.batch

acrobat.exe

first-run.pdf

first-run.bat

first-run.bat.orig

yesik:~/ItsFOSS$ grep .bat sample.data

login.bat

logout.batch

acrobat.exe

first-run.bat

first-run.bat.orig

As you can see, my solution kept filenames I didn't want.

It is somewhat understandable for the .batch or .bat.orig files. But could you explain why
acrobat.exe was retained too? And how could you fix my solution to achieve the intended goal?

22

The solution

What was the problem?
My issue here was caused by the grep command taking a r egular expression as search pattern.
Not a fixed string.

Regular expressions allows to describe a set of strings. This is achieved through the use of
metacharacters. That is characters which have a special meaning rather that matching literally
with their value.

The dot is such a character. A dot in a regular expression will match any character. So, when I
write:

grep .bat sample .data

That means I want to keep lines containing the three letters b , a and t , preceded by any
character. Either a verbatim dot. Or any other character.

How to fix that?

Protecting the dot from special interpretation

To fix that, I may remove the special meaning of the dot. In a regular expression, you remove the
special meaning of a metacharacter by preceding it with a backslash.

However there is a pitfall here: the argument string is processed twice . Once by the shell that will
parse the command. Then a second time by the grep command that will interpret the regular
expression. So, for the grep command to see the backslash, we must escape that one first from
the shell interpretation by using...a second backslash:

grep \\ .bat sample .data

If you don't like the "double backslash", a second option is to use single quotes to protect the
whole pattern from any shell interpretation:

grep '\.bat' sample.data

23

Finally, if you really don't like backslashes, you may use a character set in the regular
expression:

grep '[.]bat' sample.data

A character set will match any character between the brackets. If you only put a dot between the
brackets, it can only match a verbatim dot.

Anchoring a pattern at the end of a line

The three solutions above removed the special meaning of the dot. But how to keep only files
ending by .bat ? Once again the solution lies in the regular expression metacharacters.
Especially the dollar sign will match the end of the line. And once again, since the dollar sign has
special meaning in the shell too, we must protect it from the shell interpretation.

All that finally leading to those possible solutions:

yesik:~/ ItsFOSS$ grep '\.bat$' sample.data

login.bat

first-run.bat

Or

yesik:~/ ItsFOSS$ grep \\.bat\$ sample.data

login.bat

first-run.bat

or … I let you find a third one, maybe using some brackets?

24

Challenge 5: The lazy typist challenge

What I tried to achieve?
I have the following content in my current working directory:

yesik:~ /ItsFOSS$ ls -F

archives/

report-fall -2015. pdf

report-summer -2015. pdf

report-summer -2016. pdf

report-winter -2014. pdf

I just want to copy the summer 2016 & fall 2015 reports in the archive folder. That's pretty
simple:

yesik:~ /ItsFOSS$ cp report-summer-2016.pdf archives/

yesik:~ /ItsFOSS$ cp report-fall-2015.pdf archives/

However as I'm lazy, I cannot satisfy with those commands as they require 70 keystrokes. That's
way too much for my poor fingers! Could you help me in finding a way to copy those files with
the minimum number of keystrokes .

25

My solution
For this challenge I will not claim to have "the" solution. Maybe you will be able to achieve a better
score than myself? In that case, you really deserve congratulations!

Anyway...
The first and most obvious optimization will be to replace the two commands by only one:

cp report-summer-2016.pdf report-fall-2015.pdf archives/

[57 characters]

Then we can use glob patterns to shorten each filename. Since there is only one "fall" report, for
this one this is easy, but we must take extra cares for the summer report since I'm only
interested in the 206 version:

cp report-s*-2016.pdf report-fall*.pdf archives/

[49 characters]

As a matter of fact, given the other filenames structure, I can go even further into that way:

cp *6* *fa* a rchives/

[22 character s]

By the way we can do the same for the destination directory—which is the only subdirectory
here:

cp *6* *fa* */

[15 characters]

In some cases, using brace expansion can further reduce the number of required keystrokes.
But in that case, we remain stuck at 15 characters:

cp *{6,fa}* */

cp *{6*,fa*,/}

Unless you found something "better"?

26

Challenge 6: The dangerous file to remove

What I tried to achieve?
When I was at school (in the VT100 era:/) it wasn’t uncommon for the poor soul that has left his
terminal without closing the session to find strangely named files in his home directory when he
was back.

That was "cruel jokes" made by other students passing by. For this challenge, let's pretend you
just found a file named -rf * in your home directory:

yesik:~/ItsFOSS$ ls -1

dont remove !

-rf *

So, how to remove the unwanted file from the command line, without removing any other file?
Obviously rm -rf * is not the solution…

BEWARE:
before trying to answer this challenge, think first why this was a "cruel
joke". What are the risks with the name of this file? IF YOU CAN’T
ANSWER THAT QUESTION FIRST DON’T TRY THIS AS HOME !

27

The solution

What was the problem?
Here the problem is caused by a filename that looks like a command option. We have to find a
way to avoid the rm command to understand the dash as introducing a set of options (and
indeed the -rf option is particularly dangerous).

Maybe that was you first reflex, but no, using quotes or backslash is not the solution. None of
these syntax will work:

yesik:~/ItsFOSS$ rm '-rf *'

rm: invalid option -- ' '

Try 'rm --help' for more information.

yesik:~/ItsFOSS$ rm \-rf\ *

rm: invalid option -- ' '

Try 'rm --help' for more information.

Why those are not valid solutions? Because they would protect special characters from shell's
interpretation. But here the problem is not with the shell. But with the rm command itself.

How to solve that?
Hopefully, rm like several other standard command supports the -- special option to indicate the
start of filename list. After -- the command will no longer try to interpret strings starting by a
dash as an option. Which is exactly what we need:

yesik:~/ItsFOSS$ rm -- '-rf *'

Notice however than quotes (or backslashes) are still necessary to protect the space and the
star from shell interpretation. If you want to experiment more with that, I encourage you to use
the ls and touch commands, since both of them supports the -- option. And they are way less
dangerous to use than the rm command!

28

29

Challenge 7: The file that didn't want to go away

What I tried to achieve?
I was asked to remove the last file of the list displayed below:

yesik:~/ItsFOSS$ ls -l

total 0

-rw-r --r-- 1 yesik yesik 0 Nov 22 22:58 a

-rw-r --r-- 1 yesik yesik 0 Nov 22 22:58 b

-rw-r --r-- 1 yesik yesik 0 Nov 22 22:58 c

-rw-r --r-- 1 yesik yesik 0 Nov 22 22:58 d⁄e
yesik:~/ItsFOSS$ rm e

rm: cannot remove 'e' : No such file or directory

But as you can see, a simple rm e command didn’t work.

Why? How to remove that file?

30

The solution

What was the problem?
You know a slash cannot be part of a filename. And you may have somehow believed the file e
was in some subdirectory d .

But that's wrong.

First, there is no reason for the ls -l command to display the content of a subdirectory using
that format, And then, we can see, from the rest of the ls output, there is no subdirectory named
d here.

This problem is a typical homoglyphic confusion. You believed you've seen a slash. But in fact it
was a different character, but displayed with an unfortunately confusing glyph. In that particular
case, it was the U+2215 DIVISION SLASH Unicode character.

31

On my UTF-8 terminal the U+2215 DIVISION SLASH Unicode character is encoded using the
three bytes sequence 0xE2 0x88 0x95. You can check that using the hexdump command (with a
little bit of shell scripting for a more readable output):

yesik:~/ItsFOSS$ for f in *; do echo -n $f | hexdump -C; done

00000000 61 |a|

00000001

00000000 62 |b|

00000001

00000000 63 |c|

00000001

00000000 64 e2 88 95 65 |d...e|

00000005

If you have iconv installed on your system, you can even find the corresponding Unicode code
point by converting the data to utf-16:

yesik:~/ItsFOSS$ for f in *; do echo -n $f | iconv -t utf16be |

hexdump -C; done

00000000 00 61 |.a|

00000002

00000000 00 62 |.b|

00000002

00000000 00 63 |.c|

00000002

00000000 00 64 22 15 00 65 |.d"..e|

00000006

32

How to achieve my goal?
Knowing that, it is now easy to remove the file...if you know the Bash $'string' syntax:

yesik:~/ItsFOSS$ rm $ 'd\xe2\x88\x95e' # using the UTF-8 encoding

- or -

yesik:~/ItsFOSS$ rm $ 'd\u2215e' # using unicode code point

By the way, this would have worked too:

yesik:~/ItsFOSS$ rm d*

But you will agree, by doing this, we would have missed an interesting discussion!

33

Challenge 8: Hex to ASCII conversion in Bash

What I tried to achieve?
I have a file containing some "secret" message:

yesik: ~ /ItsFOSS$ cat SECRET

43 4F 4E 47 52 41 54 55 4C 41 54 49 4F 4E 53 20 46 4F 52 20 48 41

56 49 4E 47 20 53 4F 4C 56 45 44 20 54 48 49 53 20 43 48 41 4C 4C

45 4E 47 45

yesik:~/ ItsFOSS$ decode < SECRET

CONGRATULATIONS FOR HAVING SOLVED THIS CHALLENGE

The secret message is simply "ASCII encoded", so it is not difficult to find the original text by

consulting an ASCII table:

For example, the code 43 is corresponding to the letter C (row 4, column 3 in the above table). 4F

is the letter O . And so on.

But I wouldn't do that by hand when a computer can do it for me. So, could you write the decode

Bash function I used?

If needed, see http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-8.html for an
introduction to Bash function syntax.

And remember, this is a Bash challenge. Your solution must not use any other
programming language (no Perl, C, Python, …)

35

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-8.html

Extra challenge:
could you write a decode function using only Bash internal commands & shell
expansion (i.e.: strace -e trace=process … will show no new process
creation)

The solution

How to reproduce
Here is the raw code we used to produce this challenge. If you run that in a terminal, you will be
able to reproduce exactly the same result as displayed in the challenge illustration (assuming
you are using the same software version as me):

rm -rf ItsFOSS

mkdir -p ItsFOSS

cd ItsFOSS

M= "CONGRATULATIONS FOR HAVING SOLVED THIS CHALLENGE"

(echo -n " $M " | hexdump -v -e '/1 "%02X "' ; echo) > SECRET

decode () {

 while read -d ' ' c ; do

 echo -en '\x' $c

 done

 echo

}

clear

cat SECRET

decode < SECRET

What was the problem here?
In the SECRET file, each character of the message is represented by its ASCII code expressed
in hexadecimal . 41 → A 42 → B … 49 → I 4A → J 4B → K … 4F → O 50 → P … 5A → Z
We had to find a way to read the data and to perform the ASCII → char conversion.

36

How to fix that?

decode () {

 while read -d ' ' c ; do

 echo -en '\x' $c

 done

 echo

}

In that solution, the decode function will read the message hexadecimal number by hexadecimal
number, and will use the echo internal command to output the corresponding character. The
trick here is the -e option allowing the echo command to understand \xNN sequences as
character codes.

You can try the -e option easily:

echo -e '\x48\x45\x4C\x4C\x4F'

Alternate solutions
Other solutions are available. The most obvious would be to use the xxd tool which has a
dedicated reverse (-r) mode:

decode () { xxd -r -p; echo ; }

In addition, I cannot resist in showing you a fragile but somewhat clever solution:

decode() {

 S= ' ' $(echo $(< /dev/stdin))

 echo -e ${S/ / / \\x}

}

The first line reads the entire input data into a variable, ensuring all hexadecimal numbers are
preceded by one (and only one) space. After that, in the second line, we substitute each space
by the \x prefix so echo -e can perform the conversion. I said this solution was fragile as it will
break for very large files. Could you understand why?

37

Challenge 9: My Bash can't sum data in columns

What I tried to achieve?
I have some integer data, stored as a fixed width text file. I just want to find the total per column

of those data. However, some data are missing in the file. And those should be accounted as 0.

Unfortunately, that seems to confuse my Bash script:

yesik:~/ItsFOSS$ cat sample.data

 5 3 7 2

 1 -12

 0 -7

 -14 4

 15

yesik:~/ItsFOSS$ declare -i SW SX SY SZ

yesik:~/ItsFOSS$ while read W X Y Z ; do

> SW+= $W ; SX+= $X ; SY+= $Y ; SZ+= $Z

> done < sample.data

yesik:~/ItsFOSS$ printf " %4d %4d %4d %4d\n" $S {W,X,Y,Z}

 7 -12 7 2

I expected the result "6 -11 7 2". But for some unknown reason, the total for the first two columns
as calculated by my shell is off by 1. Could you fix that?

You can assume:
✓ the data file follow strictly the formatting used in my "printf" command.
✓ the last column is dense (i.e.: no missing value)

Extra challenge:
could you find a solution using only Bash internal commands and/or shell
expansion?

38

What was the problem?
The default behavior of the read Bash internal command is to discard any space at the start of a
line and to consider a group of spaces in a middle of a line as one and only one separator.

So basically, what appears to us as a fixed width data file, will be read a space-delimited data file
by the read command. Just like if the datafile was:

while read ; do echo $REPLY ; done < sample.data

5 3 7 2

1 -12

0 -7

-14 4

15

When displayed like that, it is more obvious why the sum of the first column was 7 and not 8 as
we expected it.

How to fix that?
I can see two main strategies to obtain the right result. First, I could just add the missing 0 value
in the empty cells, so we will always have 4 integer numbers to read on each line. The second
strategy will be to enforce the fixed width format in the code.

39

Add the missing zeros

Here is a possible solution for the first strategy described above:

declare -i SW= 0 SX= 0 SY= 0 SZ= 0

while read W X Y Z ; do

 SW+=$W ; SX+=$X ; SY+=$Y ; SZ+=$Z

done < <(sed 's/ / 0/' sample.data)

printf " %4d %4d %4d %4d\n" $S{W,X,Y,Z}

In that solution, I put a zero in the data each time I encounter a sequence of 5 spaces. Now, I
have 4 integer numbers on each line, and the read command correctly parses the data so my
totals are correct.

Bonus questions:
Could you try to shorten that sed expression?

Why using a pipe to connect the sed command and while loop wouldn't have
been such a good idea ? 1

Split data on fixed position

A completely different strategy would be to use the so-called Bash substring expansion using the
${parameter:offset:length} syntax. That way you can slice the data at fixed positions. But
for that to work, we need a second "trick": being able to read an entire line at once.

To achieve that, you need to know the IFS variable. It stores the separator used by the Bash to
split a line into words. To read an entire line at once, that is to ignore any separator, we simply
need to temporary set ISF to the empty string.

All that leading to:

declare -i SW=0 SX=0 SY=0 SZ=0

while IFS= '' read LINE; do

 SW+= ${LINE:0:5} ; SX+= ${LINE:5:5}

 SY+= ${LINE:10:5} ; SZ+= ${LINE:15:5}

done < sample.data

printf " %4d %4d %4d %4d\n" $S {W,X,Y,Z}

1 Maybe you could find the answer to that question in another challenge...

40

Challenge 10: The file that survived to rm

What I tried to achieve?
The description for this challenge is quite short:

I have three files in a directory. As root, I used rm * in that directory.

But there is one file that obstinately refuses to be deleted:

root: 011 # ls -ls

total 12

4 -rw-r --r-- 1 root root 29 nov 21 21:25 a

4 -rw-r --r-- 1 root root 29 nov 21 21:25 b

4 -rw-r --r-- 1 root root 29 nov 21 21:23 c

root: 012 # rm *

rm: cannot remove 'c' : Operation not permitted

root: 013 # rm -f c

rm: cannot remove 'c' : Operation not permitted

root: 014 # ls -ls

total 4

4 -rw-r --r-- 1 root root 29 nov 21 21:23 c

Your challenge is to find:

1. What prevented the third file to be deleted;
2. How to actually delete that file.

41

The solution

How to reproduce
Here is the raw code we used to produce this challenge. If you run that in a terminal, you will be
able to reproduce exactly the same result as displayed in the challenge illustration (assuming
you are using the same software version as me):

 # as root :

 cd /tmp

 rm -rf ItsFOSS

 mkdir -p ItsFOSS

 cd ItsFOSS

 date > a

 date > b

 date > c

 sudo chattr +i c

 clear

 ls -ls

 rm *

 rm -f c

 ls -ls

What was the problem?
You may have noticed I used above the chattr command to set the (i)mmutable Linux
filesystem attribute for the file c . Depending your exact filesystem, all attribute changes are not
available.

But here, I am using and ext2 filesystem that does support the i flag. And to quote the man:

 A file with the 'i' attribute cannot be modified: it cannot be deleted

 or renamed, no link can be created to this file and no data can be

 written to the file. Only the superuser or a process possessing the

 CAP_LINUX_IMMUTABLE capability can set or clear this attribute.

So basically after the chattr +i the file is locked until we clear this flag. Please notice the
attribute is stored in the filesystem. So it will survive reboots & filesystem unmount/mount
cycles.

42

How to fix that?
First, we can check the explanation above by using the lsattr command:

root: 015 # lsattr c

----i-------------- c

Clearly, the (i)mmutable flag is set. So, in order to remove that file (or to make any change to it), I
have to clear that flag. After that, I can do whatever I want on the file as usual:

root: 016 # chattr -i c

root: 017 # lsattr c

- ------------------ c

root: 018 # rm c

root: 019 # ls -ls

total 0

If you’re not aware of the existence of chattr , its effects can be quite puzzling. Worth
mentioning chattr is a Linux-specific command, originally written for the ext2/3/4 filesystems.
But today’s some of its feature are supported by other filesystems.

In the BSD-world, there is a similar command called chflags . Read more on
Wikipedia(https://en.wikipedia.org/wiki/Chattr) for a gentle introduction to that commands
compared to chattr .

43

https://en.wikipedia.org/wiki/Chattr

Challenge 11: The red/blue token counter

What I tried to achieve?
This challenge is more "programming-oriented" that the previous ones. The description being a
little bit abstract, try to stay with me for few minutes—hopefully, the description below should be
clear enough:

I have a stream of tokens, either 'RED', 'BLUE' or 'GREEN'. If you want, you can consider that as
a representation of an event stream for example . I have no particular control on that stream. I 2

just know it produces either one or the other token, unpredictably. And I know the steam is finite
(i.e.: at some point, there will be no more data to read).

For the sake of this challenge, I used a Bash function to produce that stream. You are not
allowed to change that in anyway.

You MUST NOT change that:

 stream () {

 TOKENS=("RED" "BLUE" "GREEN")

 for ((i=0;i<100;++i)) ; do

 echo ${TOKENS[RANDOM%3]}

 done

 }

My goal is to to count the total of each different tokens there was in he stream. By myself, I was
able find a solution to count the number of RED tokens:

You MUST change that

yesik:~/ItsFOSS$ stream | \

 grep -F RED | wc -l > RED.CNT

yesik:~/ItsFOSS$ cat RED.CNT

38

Unfortunately, I couldn’t find any solution to count each (RED, BLUE and GREEN) tokens. That’s
why I need your help. Any idea?

2 This challenge is inspired from a real-world application where we had to monitor the customer flow in a
store. There was sensors spread across strategic locations on the floor, and each sensor issued an event
when it detected someone passing by.

44

The solution

What was the problem?
The only difficulty here was my initial attempt is discarding some part of the input, because I
directly send the data stream to the grep.

Basically there are three approach to solve that problem:

● Store the stream data and process them afterward;
● Duplicate the stream and process independent path for RED, BLUE and GREEN tokens;
● Handle all cases in the same command as they arrive.

For what it worth, after each solution, I give the real-time usage observed on my system. This
just an indication and has to be taken with caution. So feel free to make your own the
comparison yourself !

The store and process approach
The simplest implementation of the store-and-process approach is obvious:

stream > stream.cache

grep -F RED < stream.cache | wc -l > RED.CNT

grep -F BLUE < stream.cache | wc -l > BLUE.CNT

grep -F GREEN < stream.cache | wc -l > GREEN.CNT

rm stream.cache

(1.3s for 10,000,000 tokens)

It works, but has several drawbacks: you have to store all the data before they are processed. In
addition, we handle the three different cases sequentially. More subtle, as you read several times
the stream.cache file, you potentially have some race condition if a concurrent process updates
that file during processing.

Still in the store-and-process category, here is a completely different solution:

stream | sort | uniq - c

(5 .9s for 10 , 000 , 000 tokens)

I consider that a store-and-process approach, since the sort command has to first read and
store (either in RAM or on disk) all data before being able to process them. More precisely, on my

45

Debian system, the sort command creates several temporary file in /tmp with read-write
permissions. Basically this solution has the same drawbacks as the very first one but with much
worst performances.

Duplicate stream
Do we really have to store the data before processing them? No. A much more clever idea would
be to split the stream in several parts, processing one kind of token in each sub-stream:

stream | tee >(grep -F RED | wc -l > RED.CNT) \

 >(grep -F BLUE | wc -l > BLUE.CNT) \

 >(grep -F GREEN | wc -l > GREEN.CNT) \

 > /dev/null

(0.8s for 10,000,000)

Here, there is no intermediate files. The tee command replicates the stream data as they arrive.
Each processing unit gets its own copy of the data, and can process them on the fly.
This is a clever idea because not only we handle data as they arrive, but we have now parallel
processing.

Handle data as they arrive
In computer science, we would probably say the previous solution took a functional approach to
the problem. On the other hand, the next ones will be purely an imperative solution. Here, we will
read each token in its turn, and if this is a RED token, then we will increment a RED counter,
else if this is a BLUE token, we will increment a BLUE counter else if this is a GREEN token, we
will increment a GREEN counter.

This is a plain Bash implementation of that idea:

declare -i RED=0 BLUE=0 GREEN=0

stream | while read TOKEN; do

 case " $TOKEN " in

 RED) RED+=1

 ;;

 BLUE) BLUE+=1

 ;;

 GREEN) GREEN+=1

 ;;

 esac

done

(103.2s for 10,000,000 tokens)

46

Finally, being a great fan of the AWK command, I will not resist the temptation of using it to solve
that challenge in a neat and elegant way:

stream | awk '

 /RED/ { RED++ }

 /BLUE/ { BLUE++ }

 /GREEN/ { GREEN++ }

 END { printf "%5d %5d %5d\n" ,RED,BLUE,GREEN }

'

(2.6 s for 10 , 000 , 000 tokens)

My AWK program is made of four rules:

1. When encountering a line containing the word RED, increase (++) the RED counter
2. When encountering a line containing the word BLUE, increase the BLUE counter
3. When encountering a line containing the word GREEN, increase the GREEN counter
4. At the END of the input, display both counters.

Of course to fully understand that you have to know, for the purpose of mathematical operators,
uninitialized AWK variables are assumed to be zero.

That works great. But it requires duplication of the same rule for each token. Not a big deal here
as we have only three different tokens. More annoying if we have many of them. To improve that
solution, we could rely on arrays :

stream | awk '

 { C[$ 0]++ }

 END { printf "%5d %5d %5d\n" ,C["RED"],C["BLUE"],C["GREEN"] }

'

(2.0 s for 10 , 000 , 000 tokens)

We only need two rules here, whatever is the number of tokens:
1. Whatever is the read token ($0) increase the corresponding array cell (here, either

C["RED"], C["BLUE"] or C["GREEN"])
2. At the END of the input, display the content of the array both for the different tokens.

Please notice that "RED", "BLUE" and "GREEN" are now handled as character strings in the
program (did you see the double quotes around them?) And that’s not an issue for AWK since it
does support associative arrays. And just like plain variables, uninitialized cells in an AWK
associative array are assumed to be zero for mathematical operators.

As I explained it before, I made the choice of using AWK here. But Perl fans might have a
different opinion of the subject. If you’re one of them, why writing your own solution?

47

Challenge 12: Inserting the same header on top of
several different files

What I tried to achieve?
This time I work with several data files and one header file. I just want to insert the content of the
header file on top of each data file:

yesik.it:~/ItsFOSS$ head HEADER DATA01

==> HEADER <==

Month, Year, Est.Value

==> DATA01 <==

Dec, 2015 , 15000

Jan, 2016 , 12540

Feb, 2016 , 11970

48

For the sake of the demonstration, I only displayed the content of one file. But you may imagine I
have many of them — too many for considering manual editing.

It thought I found a solution using the cat command:
yesik.it:~/ItsFOSS$ cat HEADER DATA01 | tee DATA01

Month, Year, Est.Value

Month, Year, Est.Value

Unfortunately, for some reason that solution didn’t work: not only I’ve lost the data but my header
appears twice.

As you can see, I really need your help here — both to explain to me what was going on and to
help me in solving that issue.

The solution

What was the problem?
In a pipeline, all commands are launched in parallel. That means the cat command reading the
DATA01 file and the tee command overwriting that same file are launched simultaneously.

This is really a race condition. On my system, tee had time to overwrite the destination file
before cat had the opportunity to read it. To illustrate that, we can delay the commands and see
the output is clearly dependent on the timing:

cat HEADER DATA01 | (sleep 1 ; tee DATA01)

Month, Year, Est.Value

Dec, 2015 , 15000

Jan, 2016 , 12540

Feb, 2016 , 11970

(sleep 1 ; cat HEADER DATA01) | tee DATA01

Month, Year, Est.Value

I would have a similar issue (albeit deterministic this time) using the simpler:

cat HEADER DATA01 > DATA01

49

In that case, the shell always overwrites the destination file before launching the cat command.
So the content of the file is lost long before cat had even the opportunity to read it.

How to fix that?
Obviously, no one would even consider using the sleep hack to solve that challenge in a real
situation. But this is not an issue: as part of the standard POSIX tools, we have several
commands at our disposal to insert the header on top of a file. Before that, let’s take a look at the
most basic solution.

The KISS solution

cat HEADER DATA01 > DATA01 .NEW

mv -f DATA01 .NEW DATA01

Do I really need to comment that? Well, while being rudimentary, this solution has a nice feature:
since mv will use the system call rename , which itself is atomic in that sense other process
referencing the DATA01 file will either see the old content or the new content—but neither a
half-written content.

A somewhat similar solution, but avoiding to create a temporary file visible on the filesystem
would obtain first a file descriptor to read from the original file before overwriting it:

exec 3<DATA01 # (1)

rm -f DATA01 # (2)

cat HEADER - <&3 >DATA01 # (3)

exec 3<&- # (4)

1. Open the file DATA1 for reading using the file descriptor 3;
2. Unlink the original file (i.e.: remove its directory entry, but not the data since the file is still

open);
3. Use cat to read the header first, followed by a stdin read from file descriptor 3 and write

to a new DATA01 file;
4. Close the file descriptor 3. This will effectively delete the old DATA01 content.

Please note this solution is no longer atomic in the sense described above. Anyways, Kudos to
Adithya Kiran Gangu for having suggested me that solution!

Using sed

While encountering such kind of problems, my first idea is often to use sed . It is quite easy to
insert a "header" after the first line using sed . Unfortunately, it’s much more difficult to insert
something before the first line. In fact, to achieve that, we will need a little bit of magic:

50

https://en.wikipedia.org/wiki/File_descriptor
https://www.facebook.com/adithyakiran.gangu

sed -i '1{

 r HEADER

 N

}' DATA01

To fully understand, you need to know the (r)ead command inserts the content of a file in the
destination stream, but only once the current line processing has ended . That’s why I used
the (N)ext command: it will end the line 1 processing early (i.e.: before normal line output). So,
when encountering that command, sed ends processing of line 1. Which triggers output of the
content of the HEADER file. But the line 1 itself is not sent to the output. It is kept in the sed
buffer.

Then sed reads the next line of input, append it to the buffer, and as we do not have any rule for
line 2, process it as usual by sending its buffer to the output (remember at that stage, the buffer
contains both line 1 and line 2).

This solution has a major drawback: it assumes there is a line 2. If the data file contains only one
line, this will fail miserably.

Using ed or ex

We have very few occasions of using ed or its cousin ex . Both are line oriented editors. Their
behavior is very similar to vi in that sense you load file into memory, and send commands to the
editor to modify that file. The only difference here is we will script the commands instead of using
them interactively.

ed DATA01 << .

0r HEADER

wq

.

ex -s DATA01 << .

0r HEADER

wq

.

This works great, but as we have to load the whole file into memory which could be an issue for
very large files.

As always, those are probably only a subset of all possible solutions. For example, I bet you
could find more solutions using AWK or Perl, for example!

51

Challenge 13: Converting text to uppercase

What I tried to achieve?
I have some text file containing twice the same sentence, once written in English and once
written French:

yesik.it:~/ItsFOSS$ cat text

This text should be written in all

uppercase letters!

Ce text doit être affiché uniquement

en lettres majuscules!

I need to display the content of that file in all uppercases. Do you have any idea how I could
perform that task? I mean without having to retype all the text…

The solution
The canonical tool to perform character substitution is tr --which stands for transliteration . The
tr command takes two arguments: the source alphabet and the destination alphabet. And it
performs a one-to-one mapping from the former to the latter.

yesik.it:~/ItsFOSS$ tr '[a-z]' '[A-Z]' < text

THIS TEXT SHOULD BE WRITTEN IN ALL

UPPERCASE LETTERS!

CE TEXT DOIT êTRE AFFICHé UNIQUEMENT

EN LETTRES MAJUSCULES!

This worked. But only for the US-ASCII letters. The accentuated letter, and any letter outside the
US-ASCII range were not transliterated.

If you have some experience in using the regular expression , you may be tempted to use 3

character classes instead of an explicit range:

3 The ̀tr` command do not use regular expression. But it accepts a syntax similar to character ranges to
specify the source and destination alphabets. For example, the syntax [a-z] is a shorthand for
abcdefghijklmnopqrstuvwxyz

52

yesik.it:~/ItsFOSS$ tr '[[:lower:]]' '[[:upper:]]' < text

THIS TEXT SHOULD BE WRITTEN IN ALL

UPPERCASE LETTERS!

CE TEXT DOIT êTRE AFFICHé UNIQUEMENT

EN LETTRES MAJUSCULES!

Unfortunately this doesn't work better. A solution would be to explicitly add the mapping for the
required characters:

yesik.it:~/ItsFOSS$ tr 'éê[a-z]' 'ÉÊ[A-Z]' < text

THIS TEXT SHOULD BE WRITTEN IN ALL

UPPERCASE LETTERS!

CE TEXT DOIT ÊTRE AFFICHÉ UNIQUEMENT

EN LETTRES MAJUSCULES!

This time, it works, but this is tedious. Especially if you don't know in advance the set of letters
that will be present in the text file. Surprisingly enough, the Bash is much better suited than the
tr command to change the character case:

yesik.it:~/ItsFOSS$ while read ; do

 echo ${REPLY^^}

 done < text

THIS TEXT SHOULD BE WRITTEN IN ALL

UPPERCASE LETTERS!

CE TEXT DOIT ÊTRE AFFICHÉ UNIQUEMENT

EN LETTRES MAJUSCULES!

In that code, the outer while loop simply read the input file line by line. The Bash read command
by default store the read value into the REPLY variable. And I just have to echo that variable, but
using the special ${ var ̂^} notation that will expand to the content of a variable but with letters
converted to uppercase.

As an exercise, I let you experiment with the ${ var ,,} parameter expansion which works the
same, but converting to lowercase rather than to uppercase.

53

Challenge 14: The Back in Time Function

What I tried to achieve?
This time, I want a shell function to display the date and time it was two hours ago . The function
output must follow the YYYY-MM-DD hh:mm format.

I came to a solution using simple shell arithmetics:

minus-two- hours () {

 date -d " $1 " + "%F %H:%M" | \

 {

 IFS= ": " read -a COMP

 echo " ${COMP[0]} $((10#${COMP[1]}-2)): ${COMP[2]} "

 }

}

As you noticed, the function takes a date as an argument, parse it, and write back that date
minus two hours. Unfortunately, the result is far from being satisfactory as the expected format is
not always respected and I even have negative hours sometimes:

yesik.it:~/ItsFOSS$ minus-two-hours now

2016 - 11 - 22 20 : 55

yesik.it:~/ItsFOSS$ minus-two-hours "2016/11/21 05:27:18"

2016 - 11 - 21 3 : 27

yesik.it:~/ItsFOSS$ minus-two-hours "2016/11/21 01:10:42"

2016 - 11 - 21 - 1 : 10

Could you help me finding a solution to obtain the desired result?

54

The solution

What was the problem?
Date arithmetic is much more complicated that one might expect. I strongly discourage you from
taking the path I used in my initial attempt: never do date and time calculations by yourself. If you
really need an argument to convince you, think for example about issues with daylight saving
time.

That being said, which options do we still have? Any decent programming language should have
some facilities to deal with time specific issues. Here we are using the Bash, and we have to rely
on the date tool for that purpose.

How to fix that?

Converting date to quantities

When faced with similar problems, the typical solution will be to convert the (human readable)
date and time to some numeric quantity .

Usually, we convert dates to a number of seconds (or milliseconds) since some reference time.
Having that numeric quantity, we can now use classic arithmetics to add or remove
homogeneous quantities (say remove 7200s — that is 2×60×60s — to obtain the date it was two
hours ago). Finally, using the same facilities as in the initial step, we can convert back the result
to a date-time format.

55

In practice, in Unix-like systems, the reference date is usually 00:00:00 UTC on 1 January
1970—sometimes known as Unix Epoch . And the date utility does provide: 4

● the %s specifier to convert a date to the number of seconds since the Epoch
● and the "@" symbol to specify an input date is expressed as a number of seconds since

the Epoch (BSD will use the -r option for that purpose)

So here is a possible solution to my issue:

minus-two-hours() {

 # 1. Convert to number of seconds since Unix Epoch

 SRC=$(date -d "$1" + "%s")

 # 2. Remove two hours (expressed as a number of seconds)

 DST=$((SRC- 2 * 60 * 60))

 # 3. Display the result using the required format

 date -d "@$DST" + "%F %H:%M"

}

Using the mighty powers of GNU date utils

The solution above is highly portable — even beyond the limits of shell programming.

But when using GNU date as we do on Linux for example, we have access to a whole world of
subtleties to express the date. In particular, you can simply write that:

minus-two-hours() {

 date -d "$1 2 hours ago" + "%F %H:%M"

}

Yes: "2 hours ago" is part of the date specification and is understood by GNU date as a way to
say "remove two hours to the previous date".

As you can see, when portability is not a concern, it worth taking the time to explore a little bit
your specific tools documentation as they may contain hidden gems!

4 I always wondered if the Apoc character name in Matrix was related to that. In "French English" both are
pronounced the same...

56

https://en.wikipedia.org/wiki/Unix_time
https://www.gnu.org/software/coreutils/manual/html_node/Examples-of-date.html#g_t_0025s_002dexamples
https://www.gnu.org/software/coreutils/manual/html_node/Seconds-since-the-Epoch.html#Seconds-since-the-Epoch
https://www.gnu.org/software/coreutils/manual/html_node/Examples-of-date.html

Challenge 15: My Bash don't know how to count.
Again!

What I tried to achieve?
I just want to add the first and last integer stored in some data file. So I typed that at my Bash
prompt:

yesik:001$ cat sample.data

1 2 3

yesik:002$ cut -d ' ' -f1,3 sample.data | read X Z

yesik:003$ echo $((X+Z))

0

And the result displayed by my shell is 0 (zero). C'mon Bash: 1+3 is 4, not 0.
My bash don't know how to count ! Is it broken?

The solution

What was the problem?

Kudos to It’s FOSS reader Riccardo Bernard for a great explanation of the "problem":

the line [2] is executed by starting the two sides of '|' in subprocesses. Therefore, read is
not run in the shell, but in a subprocess and sets the variables in the subshell.

Indeed, you can only change the content of the variable of the current shell. You cannot change
the content of a parent shell's variable. So, since the data are read here in a sub-process, only
the sub-process environment was changed. When line [3] is executed, we are back in the parent
shell—where variables were never modified. Notice this is different in zsh .

How to fix that?
There is several way to fix the problem. All of them require we read the data in the same shell as
the one that will perform calculations.

58

A simple solution would be to completely discard the cut command, and read the data using a
simple redirection:

yesik:002$ read X Y Z < sample.data

If you really want to read the output of some external command though, you may use a process
redirection instead:

yesik:002$ read X Z < <(cut -d ' ' -f1,3 sample.data)

...or a here string :

yesik:002$ read X Z <<< $(cut -d ' ' -f1,3 sample.data)

Finally worth mentioning the Bash in not necessary the best solution for that kind of problem. A
simple AWK program may do the work much better—especially since the implied loop allows you
to handle with exactly the same program a file containing one row and a file containing
thousands of them:

yesik :002$ awk '{ print $1 + $3 }' sample.data

59

Challenge 16: Sending a file between two
computers

What I tried to achieve?
I have two computers connected on the same local network. Their respective IPv4 addresses
are 192.168.10.10 and 192.168.10.11.

I want to send a file from 192.168.10.10 to 192.168.10.11. How can I do that, knowing they do not
have access to any kind of file sharing service and none of them has remote terminal facilities
like ssh or telnet enabled.

All you may assume here is you can ping them from each other and you have access to a
terminal running Bash on each host. You should not assume root access to any of the hosts.

Obviously, using a removable media like a USB pen drive would be a solution. But I've forgotten
my pen drive at home. And it's late Sunday, so all shops are closed. Anyway, I want a
network-based solution!

The solution

What was the problem?
The challenge here is to find a solution to open some kind of network communication channel
between the hosts. And then copy a file from the source host to the destination host through that
channel.

That's the kind of solution that will be used under the hood by a tool like scp . Or rsync in
client/server mode. But I assumed in the challenge description those facilities were not available.

So, I have to find a way to create that communication channel by myself. The traditional tool for
ad-hoc connections is netcat (or nc as it may be spelled in your distribution) There are chances
netcat was installed as part of your standard Linux installation. So let's start using that
program—unless your administrator removed it?

Introducing netcat
Note: if you don't have access to two different computers on the same network, you can still
experiment by testing from two different terminals on your computer and using localhost
instead of both IP addresses.

60

In order to use netcat to transfer data between two hosts, you may start two different instances
of the tool. One on each host.

The first instance will open a port and wait for incoming requests. It is more straightforward to
open the listener on the destination host. This is what I will do here:

On the destination host

192.168.10.11$ netcat -l 1234

With that command, netcat will open the port 1234 (an arbitrary number) and wait for an
incoming connection (option -l for "listen").

On the source host, we will use netcat too, but this time to connect to the remote host and port
we've just opened:

On the source host

192.168.10.10$ echo hello | netcat 192.168.10.11 1234

Press enter and the "hello" message will be displayed on the destination host.

What has happened here can be summarized in the following few steps:

1. The destination netcat has opened the port 1234 for incoming connections
2. The source netcat has established the connection to the destination host

192.168.10.11 port 1234
3. The source netcat then started to read from its standard input and to send the data

through the connection established previously
4. The destination netcat displayed on its standard output the data received from the

connection.
5. At some point, the source netcat detected there was no more data to read and closed

the connection (the exact behavior when encountering EOF is controlled by the -N
option)

6. The destination netcat detected the connection has closed and has terminated too.

61

Once you know that, transferring a file can be achieved using some simple redirection:

On the destination host

192.168.10.11$ netcat -l 1234 > my.file

On the source host

192.168.10.10$ netcat 192.168.10.11 1234 < my.file

Replacing the client netcat by the Bash
Unfortunately, we can't solve that challenge using only the Bash since it is not able to open a
server socket (the "listener" part of the communication channel). But the Bash may act as a
client to connect to an existing server socket. So, server-side, we will use exactly the same
command as above:

On the destination host

192.168.10.11$ netcat -l 1234

But client-side, we no longer need netcat:

On the source host

192.168.10.11$ echo hello > /dev/tcp/192.168.10.11/1234

In that case, the shell redirection to /dev/tcp/… will handle under the hood the connection to
the remote host just like netcat did it previously.

By the way, no need to search in /dev for the tcp device. It does not really exist. It is simply a
magic filename the Bash handle specifically. That means you can only use those special
filenames in redirections.

62

Despite some limitations, the Bash / dev/tcp/… pseudo-devices can be remarkably useful, for
testing purposes or to diagnose network issues. To conclude on that topic, I can't resist in
showing you some fun use case. I let up to you to do the necessary researches to understand
the details:

Open a connection with a remote web server

exec 3<> /dev/tcp/httpbin.org/80

send a HTTP GET request

awk -v ORS=$'\r\n' '{print}' >&3 << EOT

GET /ip HTTP/1.1

host: httpbin.org

connection: close

EOT

(the line above EOT must be empty. i.e. not even containing spaces)

display the server's reply

cat <&3-

63

Challenge 17: Generate a fair dice roll

What I tried to achieve?
I'm starting to write a text adventure game in the purest tradition of the Colossal Cave Adventure
or Zork. But written in Bash.

For that game, I need a way to generate fair 6-faced dice rolls. Of course, I do not need a
"cryptographically strong pseudorandom number generator". But, on the other hand, the
following solution in probably not satisfying either:

(f rom https://xkcd.com/221/ © the xkcd author some right reserv ed)

Could you help me in generating a random number in the 1-6 range, each result being equally
probable?

The solution

What was the problem?
If you only had to know the $RANDOM Bash variable to produce pseudo-random numbers, this
challenge would have probably been put into the "Level 2" section. But there is a subtle pitfall
involved here. What was it? Let's first examine a wrong solution to discover that:

This does NOT solve the challenge

getRandomNumber() {

 echo $((RANDOM%6+1));

}

I repeat: this does not solve the challenge, despite the fact by repeatedly calling that function you
obtain pseudorandom numbers in the 1-6 range.

64

https://xkcd.com/221/
https://xkcd.com/license.html

So what as wrong with that?

Simple: the outcome is not fair.

What was the problem, really?
The Bash random function returns a pseudo-random integer between 0 and 32767. That is 2 15
possibilities. In the above function, I used the modulo operator (%) to map that range into the 0-5
range. But this mapping can only maintain equiprobability if the destination range size is an
integer divisor of the original range size.

Simply said, in our case, since the cardinality of the original range is a power of two, you can
only have equiprobable results if you map to another set whose size is a power of two itself.
Something 6 isn't.

As this is a little bit hard to explain with words, here is a graphical representation of the mapping
from the 0-15 range (2 4 items) to the 0-5 range:

It is quite obvious in the above graph there are greater chances of obtaining an outcome in the
0-3 range rather than in the 4-5 range. As an exercise I let you produce the same graph for N in
the 0-32767 range if you want, you will discover a similar issue.

65

Knowing that, a solution you might end up with is the following one:

This does NOT solve the challenge

getRandomNumber() {

 echo $((RANDOM%2+RANDOM%2+RANDOM%2+RANDOM%2+RANDOM%2+1));

}

There is some logic here: I said if you used a power of two in the modulo operator you will have
fair results. 2 is a power of two. And %2 will produce either 0 or 1. Adding five times a number
between 0 and 1 will produce a result between 0 and 5. However:

Gather some statistical data

for ((i=0; i < 500000; ++i))

do

 getRandomNumber

done | sort | uniq -c

 15531 1

 78134 2

 155880 3

 156604 4

 78184 5

 15667 6

66

It is quite obvious the result is not fair. In fact, you can recognize the typical shape of a normal
distribution:

How to fix that?
The solution is to consider the modulo operator leads to a fair solution, but only in a subset of the
original range. For example, if the original range is 0-15, and the destination range is 0-5, for
input values in the 0-11 range, the modulo will produce an output as fair as the input. The
problem lies for input values in the 12-15 range. This is exactly was is illustrated in my initial
graph .

A trick is then simply to ignore values in the problematic range, and take another value if the
random generator produced such value. All that leading to:

This DO solve the challenge

getRandomNumber() {

 N=$RANDOM

 while ((N>=32768/6*6))

 do

 # N is in the problematic range. Take another value:

 N=$RANDOM

 done

 echo $((N%6+1));

}

67

Three remarks to conclude that challenge:

● 32768/6*6 is not the same as 32768*6/6 . Can you tell why?
● With this solution, there is an infinitesimal chance the getRandomNumber will never

return.
● And of course, all that demonstration is based on the premise the $RANDOM

pseudo-variable produces fair results. But does it really ?

68

Afterword

If you reached that point you probably took all the challenges. Well, most of them. Or perhaps
just a few?

In any cases, CON-GRA-TU-LA-TIONS! Solving even only one single challenge requires time
and efforts. Since we learn more by trials and errors rather than by succeeding at the first try,
there are chances you learned more than just the challenge's solution in that process. And
hopefully, you had fun while doing that.

Wait a minute, you had fun. Don't you?

I couldn't conclude that book without a word for the readers that will find a solution for all the
challenges. If that's your case, you are truly A-MA-ZING. Either because you already had an
extended knowledge of the subject or because of your efforts, you are Bash gurus! And you
should definitely consider sharing and spreading your wisdom. Why not by joining the Facebook
Linux User Group (https://www.facebook.com/groups/822286747871993/) ?

Finally, you learned a lot of tricks and pitfalls about the Bash here. But this book can't replace a
proper course on the topic. If you want to support your new knowledge by strong foundations,
you may enjoy my Bash and Linux Command Line Course
(https://yesik.it/BSH101/BASH-CHALLENGE-2017). By following that link you will get a special
discount for the readers of this book!

Love. Enjoy. Learn.
Sylvain Leroux

69

https://www.facebook.com/groups/822286747871993/
https://yesik.it/BSH101/BASH-CHALLENGE-2017

